Care of the laser/laparoscopic surgical patient

47 Care of the laser/laparoscopic surgical patient


Absorption:  The action of the tissue taking up the laser energy, which causes a reaction within the tissue. Thermal damage caused by laser absorption depends on the wavelength and fluence of the laser beam and the tissue consistency, color, and water content.

Coherence:  A state in which all the waves travel in the same phase and direction and all the peaks and troughs of the waves are synchronized.

Collimation:  A state in which light waves travel parallel to each other and do not diverge or spread, which reduces the loss of power and allows for better focus and precision.

Laparoscopic Surgery:  A form of endoscopic surgery with a fiberoptic laparoscope inserted into the peritoneum for surgical assessment or treatment of a wide and continually expanding range of conditions.

Laser (Light Amplification by Stimulated Emission of Radiation):  A process by which energy is converted into a light form or light energy.

Monochromatic:  Light composed of one color or wavelength.

Pneumoperitoneum:  Created when gas is delivered into the abdominal cavity through a Veress needle that is advanced through the abdominal wall. A mechanical insufflator with a pressure-limiting function is connected with tubing to the Veress needle to inflate the peritoneum. When a pneumoperitoneum is achieved, the surgical team is able to visualize the abdomen and perform the indicated procedure.

Reflection:  Occurs when the direction of the laser beam is changed after it comes in contact with a surface.

Scattering:  Process in which the laser beam is distributed in many different paths after entering the tissue.

Transmission:  Occurs when the laser beam passes through or is transmitted through a medium, such as fluids or tissue, with little or no thermal effect.

The evolution of laser and laparoscopic procedures over recent years has greatly changed the face and pace of perianesthesia nursing care. More procedures are conducted on an outpatient basis. Patients who undergo procedures that 15 years ago required lengthy hospitalizations are now discharged within 24 to 48 hours. Much of this increase in ambulatory surgery and rapid hospital discharge has been driven by reimbursement and insurance issues. Anesthetic innovations such as bispectral index monitoring, improved inhalational agents and muscle relaxants, advances in pain management, and regional anesthetic and analgesic techniques have also had positive effects. Technologic advances in surgical techniques, however, have had the greatest effect because these advances allow for the performance of more complex procedures with less trauma to the patient. Laser and laparoscopic techniques form the foundation for many of these surgeries.

This chapter provides an overview of laser and laparoscopic technologies and how the use of this technology affects perianesthesia patient care. Details of the care of patients who undergo specific procedures may be found in the appropriate systems chapters throughout this book.

Laser surgery

The term laser is actually an acronym for light amplification by stimulated emission of radiation. It describes a process by which energy is converted into a light form or light energy. The theory on which laser technology is based was developed by Albert Einstein in 1917. Schawlow and Townes further explored this theory while Gordon Gould also researched light technology. The principle of LASER was introduced in 1958 by these researchers, and the first true laser device was built by Theodore H. Maiman in 1960. Laser devices, although initially controversial, revolutionized surgical procedures; technology and use continue to expand.1,2 The benefits of laser-assisted surgery are many (Box 47-1).2,3

Laser light

Laser energy is measured by the wavelength of the light, which is the distance between two successive peaks of a wave. Laser wavelengths are often measured in nanometers. One nanometer is equal to 10–9 m.3 Some of the lasers used in surgery today are longer (e.g., the CO2 laser at 10,600 nm or the Nd:YAG laser at 1064 nm) and are within the infrared section of the electromagnetic spectrum. Other laser wavelengths are in the visible area of the electromagnetic spectrum (400 to 750 nm), whereas shorter wavelengths are found in the ultraviolet region of the electromagnetic spectrum (100 to 400 nm; Fig. 47-1).1,3

Laser light differs from ordinary light in three distinct ways that make it both unique and effective in the surgical setting.1,3

Tissue interaction

Four different interactions can occur when laser energy comes into contact with human tissue (Fig. 47-2). These interactions include reflection, scattering, transmission, and absorption.3 The extent of this interaction is dependent on the wavelength of the laser, power settings, spot size, duration of exposure of the laser beam with the tissue, and the characteristics of the tissue. These interactions can have both positive and negative effects.13

Reflection. Reflection occurs when the direction of the laser beam is changed after it comes into contact with a surface. This direction change can be intentional or accidental and thus can have both positive and negative effects. Mirrors can be used to intentionally reflect the laser beam to direct the beam to a hard-to-reach area. This action must be done carefully, however, to prevent an inadvertent strike and possible damage to a nontargeted area. Reflection can also occur if the laser beam hits an obstacle (e.g., a surgical instrument) and then is inadvertently reflected to another area, thus causing a tissue burn. Reflection can be either specular (direct reflection) or diffuse (scattered reflection).

Scattering. The laser beam can also scatter as it enters certain tissues. This scattering causes the beam to disperse over a large area and weakens its strength. Backscattering can also occur as the beam scatters backward up the endoscope, thus causing damage to the operator’s eye, the endoscope optics, or the distal end of the scope.

Transmission. Transmission occurs when the laser beam passes or is transmitted through fluids or tissue with little or no thermal effect. Transmission depends on the wavelength of the laser beam and the tissue with which it comes in contact. For example, an argon laser beam can be transmitted through the clear structures and solutions of the eye to coagulate a bleeding vessel on the retina. This action occurs because the argon energy is not absorbed by clear structures and solutions; therefore no thermal effect is noted on these tissues.

Absorption. Thermal effects and tissue response occur only when tissue absorbs the energy of the laser that contacts it. The amount of absorption and penetration depends on the beam’s wavelength and power, the characteristics of the contact tissue (color, consistency, and water content), the duration of the beam exposure, and the beam spot size. A thermal response can occur when tissue absorbs laser energy, thus heating the target cells. The degree of tissue change or thermal damage depends on the temperature to which the cells are heated. This temperature change is purposely regulated to affect the desired tissue response (Table 47-1).

Table 47-1 Tissue Changes with Temperature Increases

37-60 No visual change Warming, welding
60-65 Blanching Coagulation
65-90 White/gray Protein denaturization
90-100 Puckering Drying
>100 Smoke plume Vaporization, carbonization

From Ball KA: Lasers: the perioperative challenge, ed 3, Denver, 2004, Association of periOperative Registered Nurses.

Laser surgery can be categorized into three different types of tissue response, including thermal, mechanical, and chemical effects.1 The thermal effect, as discussed previously, is the most common laser effect as tissue is vaporized, coagulated, ablated, cut, and welded depending upon the degree of thermal interaction. The mechanical (acoustical) effect from laser energy results when sound energy is created by the laser beam which disrupts tissue. The chemical effect is produced as the laser energy is used to activate a light-sensitive dye to disrupt and change tissue.

Preoperative care

Preoperative care, as with any procedure, focuses on adequate preoperative assessment and preparation of the patient. Although procedure-specific issues are addressed in other chapters, certain issues unique to laser surgery must be addressed in this discussion. One of those issues is appropriate patient selection. Procedure-specific requirements and contraindications must be evaluated.

For example, transmyocardial revascularization with the laser is generally limited to patients with advanced cardiovascular disease who have hemodynamically stable conditions and are not candidates for traditional bypass surgery. This new laser treatment may offer a method to revascularize the heart muscle for patients with intractable ischemic heart disease.1,4 Dermatologic procedures may require extensive skin preparation at home, preoperative administration of prophylactic antibiotics or antivirals, multiple treatments, and extensive postoperative skin care regimens that may last up to 1 month or more.1,2,5Preoperative care must include education concerning these issues and must be used to determine whether the patient will be able to comply with the treatment regimen.

The patient must also be prepared for expectations both during and after surgery. Many of these procedures are conducted without any anesthesia or with moderate sedation. The patient must be prepared for the sights, smells, and other sensations that will be experienced. Eye protection must be provided. Odors can include the smell of tissue burning or being vaporized. The patient may also have burning or stinging types of painful sensations with certain procedures.1,6

Intraoperative issues

Intraoperative issues with laser procedures primarily concern safety. Lasers are considered a class III medical device and, as such, are subject to U.S. Food and Drug Administration jurisdiction.3 Many other regulatory, industry, and professional bodies also address the safe use of lasers. Regulations addressed include the registration of laser devices, training requirements, laser safety officer responsibilities, and safety rules.1,3

Lasers must be further classified by the manufacturer according to their potential to cause biologic harm and their inherent level of hazard. The classification system is based on the laser output power, wavelength, exposure duration, and emergent beam exposure. The classification system ranges from I to IV; the higher the class, the greater the potential hazard. Most lasers used in surgery are classified as a class IV and can damage eyes and skin and present a fire hazard.1,3 Because of the many provider and patient risks associated with laser use, a laser safety program should be in place in any facility in which laser procedures are conducted. This includes freestanding ambulatory facilities and physician’s offices. A laser safety committee complete with a laser safety officer should be established and responsible for guiding and overseeing all laser use in the facility. Issues that should be addressed include staff education, physician credentialing, and the monitoring of quality and safety issues. All staff involved in laser use must receive appropriate education before using or being involved in laser procedures. Topics included in these special training classes include laser biophysics, laser equipment, laser-tissue interaction, safety procedures, and clinical applications. Knowledge and skills should be verified through a competency-based credentialing program, and the skills should be reassessed and updated on a regular basis.13 The three most important areas of safe laser use include eye protection, smoke evacuation, and fire safety.

The eyes are susceptible to damage from laser radiation. The damage may occur acutely or may go unnoticed and develop gradually over time. The type of damage also varies with the type of laser being used. Anyone who enters an operating room or treatment area where a laser is in use (including the patient) is at risk for eye damage and therefore should wear protective eyewear specific to the laser in use. Filtering devices should also be placed on operative microscopes and endoscopes. The patient’s eyes should be protected with either the appropriate eyewear or moist gauze pads.13 The protective eyewear should have inscribed on the side of the frame the laser wavelength that the lenses are protecting against along with the optical density (i.e., the lenses’ filtering capabilities).13

Another major safety concern with the use of laser technology is the control of the smoke that the laser energy produces as it impacts tissue. This surgical smoke is also called laser plume or surgical plume. Surgical smoke contains extremely small particles of vaporized tissues, toxins, and steam. If inhaled, this particulate can end up in the alveoli of surgical team members or can coat the inside lumen of unprotected suction lines if used for smoke evacuation. Even short exposure to smoke particulate and odor from toxic gases may be related to headaches, nausea, myalgia, rhinitis, conjunctivitis, and respiratory conditions and complications.13 In one study, perioperative nurses were shown to have twice the incidence of targeted respiratory problems, probably because of the repeated inhalation of surgical smoke.79 In addition, there is a high chance that surgical smoke can transmit viable pathogenic material within the plume.13,7

Patients are also exposed to hazards when surgical smoke is not evacuated appropriately. One study demonstrated that laparoscopic surgery patients can absorb the byproducts of laser tissue interaction (surgical smoke), thus increasing the level of the patient’s methemoglobin and carboxyhemoglobin. This in turn, will decrease the oxygen-carrying capabilities of the red blood cells. The patient is absorbing the toxins produced within surgical smoke and then exhibits symptoms of headache, double vision, or nausea in the postanesthesia care area.10 When surgical smoke is properly evacuated during laparoscopy, vision of the surgical site is maintained, smoke is not absorbed by the patient, and these untoward symptoms are not routinely present in the recovering patient.

A smoke evacuation system with an ultra low penetration air filter (to remove small particles) and charcoal filters (to absorb toxic gases) must be used whenever surgical smoke is generated. The smoke collection device should be positioned as close to the laser–tissue impact site as possible. All persons in the room should also wear high-filtration masks to protect against any residual plume that may have escaped capture. Surgical masks are never to be the first line of defense to protect against plume inhalation. There are smoke evacuators available today that sense surgical smoke is being generated and automatically activate the system to gently evacuate the plume without destroying the pneumoperitoneum. There also are other different types of plume removal products that can be attached to the trocar sleeve to help clear the abdominal cavity of smoke without impacting the pneumoperitoneum. If any of these products require a suction line, then an in-line suction filter must be used so that plume particulate will not be drawn into the suction system. The in-line filter must be placed between the wall outlet and the suction canister to avoid pulling fluids through the filter, which would destroy it. Although smoke evacuation devices and supplies are available on the market today, compliance with smoke evacuation recommendations continues to be lacking.

Evidence-Based Practice

Surgical smoke creates a serious workplace hazard for more than 500,000 health care workers as the gases within smoke create an offensive and harmful odor, the small particulate matter causes respiratory problems, and pathogens may be transmitted within surgical smoke. Patients can even absorb dangerous gases when smoke is generated during laparoscopy. Research has demonstrated the many hazards of surgical smoke, but compliance with smoke evacuation recommendations continues to be lacking. A descriptive exploratory study was conducted using a validated and piloted survey that was completed by a random sampling of perioperative nurses working with electrosurgery devices. Major findings revealed that specific key indicators influencing compliance include increased knowledge and training, positive perceptions about the complexity of the recommendations, and larger facilities with increased specializations, interconnectedness, and leadership support. The barriers to compliance include a lack of availability of smoke evacuation equipment, physicians’ negative attitudes about smoke evacuation, noisy smoke evacuation equipment, and staff complacency.

Stay updated, free articles. Join our Telegram channel

Nov 6, 2016 | Posted by in NURSING | Comments Off on Care of the laser/laparoscopic surgical patient

Full access? Get Clinical Tree

Get Clinical Tree app for offline access