Basic principles of neuropharmacology

CHAPTER 12


Basic principles of neuropharmacology


Neuropharmacology can be defined as the study of drugs that alter processes controlled by the nervous system. Neuropharmacologic drugs produce effects equivalent to those produced by excitation or suppression of neuronal activity. Neuropharmacologic agents can be divided into two broad categories: (1) peripheral nervous system (PNS) drugs and (2) central nervous system (CNS) drugs.


The neuropharmacologic drugs constitute a large and important family of therapeutic agents. These drugs are used to treat conditions ranging from depression to epilepsy to hypertension to asthma. The clinical significance of these agents is reflected in the fact that over 25% of this text is dedicated to them.


Why do we have so many neuropharmacologic drugs? The answer lies in a concept discussed in Chapter 5: Most therapeutic agents act by helping the body help itself. That is, most drugs produce their therapeutic effects by coaxing the body to perform normal processes in a fashion that benefits the patient. Since the nervous system participates in the regulation of practically all bodily processes, practically all bodily processes can be influenced by drugs that alter neuronal regulation. By mimicking or blocking neuronal regulation, neuropharmacologic drugs can modify such diverse processes as skeletal muscle contraction, cardiac output, vascular tone, respiration, GI function, uterine motility, glandular secretion, and functions unique to the CNS, such as ideation, mood, and perception of pain. Given the broad spectrum of processes that neuropharmacologic drugs can alter, and given the potential benefits to be gained by manipulating those processes, it should be no surprise that neuropharmacologic drugs have widespread clinical applications.


We begin our study of neuropharmacology by discussing PNS drugs (Chapters 14 through 19), after which we discuss CNS drugs (Chapters 20 through 40). The principal rationale for this order of presentation is that our understanding of PNS pharmacology is much clearer than our understanding of CNS pharmacology. Why? Because the PNS is less complex than the CNS, and more accessible to experimentation. By placing our initial focus on the PNS, we can establish a firm knowledge base in neuropharmacology before proceeding to the less definitive and vastly more complex realm of CNS pharmacology.




How neurons regulate physiologic processes


As a rule, if we want to understand the effects of a drug on a particular physiologic process, we must first understand the process itself. Accordingly, if we wish to understand the impact of drugs on neuronal regulation of bodily function, we must first understand how neurons regulate bodily function when drugs are absent.


Figure 12–1 illustrates the basic process by which neurons elicit responses from other cells. The figure depicts two cells: a neuron and a postsynaptic cell. The postsynaptic cell might be another neuron, a muscle cell, or a cell within a secretory gland. As indicated, there are two basic steps—axonal conduction and synaptic transmission—in the process by which the neuron influences the behavior of the postsynaptic cell. Axonal conduction is simply the process of conducting an action potential down the axon of the neuron. Synaptic transmission is the process by which information is carried across the gap between the neuron and the postsynaptic cell. As shown in the figure, synaptic transmission requires the release of neurotransmitter molecules from the axon terminal followed by binding of these molecules to receptors on the postsynaptic cell. As a result of transmitter-receptor binding, a series of events is initiated in the postsynaptic cell, leading to a change in its behavior. The precise nature of the change depends on the identity of the neurotransmitter and the type of cell involved. If the postsynaptic cell is another neuron, it may increase or decrease its firing rate; if the cell is part of a muscle, it may contract or relax; and if the cell is glandular, it may increase or decrease secretion.




Basic mechanisms by which neuropharmacologic agents ACT


Sites of action: axons versus synapses


In order to influence a process under neuronal control, a drug can alter one of two basic neuronal activities: axonal conduction or synaptic transmission. Most neuropharmacologic agents act by altering synaptic transmission. Only a few alter axonal conduction. Why do drugs usually target synaptic transmission? Because drugs that alter synaptic transmission can produce effects that are much more selective than those produced by drugs that alter axonal conduction.





Receptors

The ability of a neuron to influence the behavior of another cell depends, ultimately, upon the ability of that neuron to alter receptor activity on the target cell. As discussed, neurons alter receptor activity by releasing transmitter molecules, which diffuse across the synaptic gap and bind to receptors on the postsynaptic cell. If the target cell lacked receptors for the transmitter that a neuron released, that neuron would be unable to affect the target cell.


The effects of neuropharmacologic drugs, like those of neurons, depend on altering receptor activity. That is, no matter what its precise mechanism of action, a neuropharmacologic drug ultimately works by influencing receptor activity on target cells. This commonsense concept is central to understanding the actions of neuropharmacologic drugs. In fact, this concept is so critical to our understanding of neuropharmacologic agents that I will repeat it: The impact of a drug on a neuronally regulated process is dependent on the ability of that drug to directly or indirectly influence receptor activity on target cells.



Steps in synaptic transmission


To understand how drugs alter receptor activity, we must first understand the steps by which synaptic transmission takes place—since it is by modifying these steps that neuropharmacologic drugs influence receptor function. The steps in synaptic transmission are summarized in Figure 12–2.






< div class='tao-gold-member'>

Stay updated, free articles. Join our Telegram channel

Jul 24, 2016 | Posted by in NURSING | Comments Off on Basic principles of neuropharmacology

Full access? Get Clinical Tree

Get Clinical Tree app for offline access